9 research outputs found

    3D shape reconstruction using a polarisation reflectance model in conjunction with shading and stereo

    Get PDF
    Reconstructing the 3D geometry of objects from images is a fundamental problem in computer vision. This thesis focuses on shape from polarisation where the goal is to reconstruct a dense depth map from a sequence of polarisation images. Firstly, we propose a linear differential constraints approach to depth estimation from polarisation images. We demonstrate that colour images can deliver more robust polarimetric measurements compared to monochrome images. Then we explore different constraints by taking the polarisation images under two different light conditions with fixed view and show that a dense depth map, albedo map and refractive index can be recovered. Secondly, we propose a nonlinear method to reconstruct depth by an end-to-end method. We re-parameterise a polarisation reflectance model with respect to the depth map, and predict an optimum depth map by minimising an energy cost function between the prediction from the reflectance model and observed data using nonlinear least squares. Thirdly, we propose to enhance the polarisation camera with an additional RGB camera in a second view. We construct a higher-order graphical model by utilising an initial rough depth map estimated from the stereo views. The graphical model will correct the surface normal ambiguity which arises from the polarisation reflectance model. We then build a linear system to combine the corrected surface normal, polarimetric information and rough depth map to produce an accurate and dense depth map. Lastly, we derive a mixed polarisation model that describes specular and diffuse polarisation as well as mixtures of the two. This model is more physically accurate and allows us to decompose specular and diffuse reflectance from multiview images

    Least squares surface reconstruction on arbitrary domains

    Get PDF

    Linear Differential Constraints for Photo-polarimetric Height Estimation

    Full text link
    In this paper we present a differential approach to photo-polarimetric shape estimation. We propose several alternative differential constraints based on polarisation and photometric shading information and show how to express them in a unified partial differential system. Our method uses the image ratios technique to combine shading and polarisation information in order to directly reconstruct surface height, without first computing surface normal vectors. Moreover, we are able to remove the non-linearities so that the problem reduces to solving a linear differential problem. We also introduce a new method for estimating a polarisation image from multichannel data and, finally, we show it is possible to estimate the illumination directions in a two source setup, extending the method into an uncalibrated scenario. From a numerical point of view, we use a least-squares formulation of the discrete version of the problem. To the best of our knowledge, this is the first work to consider a unified differential approach to solve photo-polarimetric shape estimation directly for height. Numerical results on synthetic and real-world data confirm the effectiveness of our proposed method.Comment: To appear at International Conference on Computer Vision (ICCV), Venice, Italy, October 22-29, 201

    Linear Differential Constraints for Photo-polarimetric Height Estimation

    Get PDF
    In this paper we present a differential approach to photopolarimetric shape estimation. We propose several alternative differential constraints based on polarisation and photometric shading information and show how to express them in a unified partial differential system. Our method uses the image ratios technique to combine shading and polarisation information in order to directly reconstruct surface height, without first computing surface normal vectors. Moreover, we are able to remove the non-linearities so that the problem reduces to solving a linear differential problem. We also introduce a new method for estimating a polarisation image from multichannel data and, finally, we show it is possible to estimate the illumination directions in a two source setup, extending the method into an uncalibrated scenario. From a numerical point of view, we use a least-squares formulation of the discrete version of the problem. To the best of our knowledge, this is the first work to consider a unified differential approach to solve photo-polarimetric shape estimation directly for height. Numerical results on synthetic and real-world data confirm the effectiveness of our proposed method

    Uncalibrated, Two Source Photo-Polarimetric Stereo

    Get PDF
    none5siAvailable online: 6 May 2021.In this paper we present methods for estimating shape from polarisation and shading information, i.e. photo-polarimetric shape estimation, under varying, but unknown, illumination, i.e. in an uncalibrated scenario. We propose several alternative photo-polarimetric constraints that depend upon the partial derivatives of the surface and show how to express them in a unified system of partial differential equations of which previous work is a special case. By careful combination and manipulation of the constraints, we show how to eliminate non-linearities such that a discrete version of the problem can be solved using linear least squares. We derive a minimal, combinatorial approach for two source illumination estimation which we use with RANSAC for robust light direction and intensity estimation. We also introduce a new method for estimating a polarisation image from multichannel data and provide methods for estimating albedo and refractive index. We evaluate lighting, shape, albedo and refractive index estimation methods on both synthetic and real-world data showing improvements over existing state-of-the-art.noneTozza, Silvia; Zhu, Dizhong; Smith, William; Ramamoorthi, Ravi; Hancock, EdwinTozza, Silvia; Zhu, Dizhong; Smith, William; Ramamoorthi, Ravi; Hancock, Edwi

    Uncalibrated, Two Source Photo-Polarimetric Stereo

    No full text
    In this paper we present methods for estimating shape from polarisation and shading information, i.e. photo-polarimetric shape estimation, under varying, but unknown, illumination, i.e. in an uncalibrated scenario. We propose several alternative photo-polarimetric constraints that depend upon the partial derivatives of the surface and show how to express them in a unified system of partial differential equations of which previous work is a special case. By careful combination and manipulation of the constraints, we show how to eliminate non-linearities such that a discrete version of the problem can be solved using linear least squares. We derive a minimal, combinatorial approach for two source illumination estimation which we use with RANSAC for robust light direction and intensity estimation. We also introduce a new method for estimating a polarisation image from multichannel data and provide methods for estimating albedo and refractive index. We evaluate lighting, shape, albedo and refractive index estimation methods on both synthetic and real-world data showing improvements over existing state-of-the-art
    corecore